Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 1638.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1638.l1 | 1638t3 | \([1, -1, 1, -234509, 43769909]\) | \(-1956469094246217097/36641439744\) | \(-26711609573376\) | \([3]\) | \(15552\) | \(1.7008\) | |
1638.l2 | 1638t2 | \([1, -1, 1, -1094, 133589]\) | \(-198461344537/10417365504\) | \(-7594259452416\) | \([3]\) | \(5184\) | \(1.1515\) | |
1638.l3 | 1638t1 | \([1, -1, 1, 121, -4921]\) | \(270840023/14329224\) | \(-10446004296\) | \([]\) | \(1728\) | \(0.60215\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1638.l have rank \(1\).
Complex multiplication
The elliptic curves in class 1638.l do not have complex multiplication.Modular form 1638.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.