Properties

Label 1638.h
Number of curves $2$
Conductor $1638$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1638.h have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1638.h do not have complex multiplication.

Modular form 1638.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - 5 q^{11} - q^{13} - q^{14} + q^{16} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1638.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.h1 1638h2 \([1, -1, 0, -33070464, 73207840986]\) \(-5486773802537974663600129/2635437714\) \(-1921234093506\) \([]\) \(65856\) \(2.5959\)  
1638.h2 1638h1 \([1, -1, 0, 6426, 2238516]\) \(40251338884511/2997011332224\) \(-2184821261191296\) \([]\) \(9408\) \(1.6229\) \(\Gamma_0(N)\)-optimal