Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 1638.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1638.b1 | 1638d1 | \([1, -1, 0, -21, 63]\) | \(-38958219/30758\) | \(-830466\) | \([3]\) | \(288\) | \(-0.16566\) | \(\Gamma_0(N)\)-optimal |
1638.b2 | 1638d2 | \([1, -1, 0, 174, -964]\) | \(29503629/35672\) | \(-702131976\) | \([]\) | \(864\) | \(0.38364\) |
Rank
sage: E.rank()
The elliptic curves in class 1638.b have rank \(1\).
Complex multiplication
The elliptic curves in class 1638.b do not have complex multiplication.Modular form 1638.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.