# Properties

 Label 162450bs Number of curves $2$ Conductor $162450$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("162450.et1")

sage: E.isogeny_class()

## Elliptic curves in class 162450bs

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
162450.et2 162450bs1 [1, -1, 1, -191976980, -51824345353]  112066560 $$\Gamma_0(N)$$-optimal
162450.et1 162450bs2 [1, -1, 1, -2167368980, -38737901273353]  224133120

## Rank

sage: E.rank()

The elliptic curves in class 162450bs have rank $$1$$.

## Modular form 162450.2.a.et

sage: E.q_eigenform(10)

$$q + q^{2} + q^{4} + 4q^{7} + q^{8} - 6q^{11} - 4q^{13} + 4q^{14} + q^{16} + 6q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 