Properties

Label 16245.n
Number of curves $1$
Conductor $16245$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.n1 16245m1 \([0, 0, 1, -57, -5]\) \(77824/45\) \(11842605\) \([]\) \(5760\) \(0.046754\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 16245.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 16245.n do not have complex multiplication.

Modular form 16245.2.a.n

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} + q^{5} - 2 q^{7} + 2 q^{10} + 3 q^{11} - 6 q^{13} - 4 q^{14} - 4 q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display