Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 16245.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
16245.l1 | 16245f2 | \([1, -1, 0, -271359, 43167438]\) | \(9393931/2025\) | \(476359646653804275\) | \([2]\) | \(194560\) | \(2.1061\) | |
16245.l2 | 16245f1 | \([1, -1, 0, 37296, 4091715]\) | \(24389/45\) | \(-10585769925640095\) | \([2]\) | \(97280\) | \(1.7596\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 16245.l have rank \(1\).
Complex multiplication
The elliptic curves in class 16245.l do not have complex multiplication.Modular form 16245.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.