Properties

Label 16245.j
Number of curves $4$
Conductor $16245$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.j1 16245c3 \([1, -1, 0, -19518435, -33185583684]\) \(23977812996389881/146611125\) \(5028240714679045125\) \([2]\) \(829440\) \(2.7757\)  
16245.j2 16245c4 \([1, -1, 0, -4020705, 2513992950]\) \(209595169258201/41748046875\) \(1431809687397216796875\) \([2]\) \(829440\) \(2.7757\)  
16245.j3 16245c2 \([1, -1, 0, -1242810, -497800809]\) \(6189976379881/456890625\) \(15669725218875140625\) \([2, 2]\) \(414720\) \(2.4291\)  
16245.j4 16245c1 \([1, -1, 0, 73035, -34360200]\) \(1256216039/15582375\) \(-534420102201636375\) \([2]\) \(207360\) \(2.0825\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16245.j have rank \(1\).

Complex multiplication

The elliptic curves in class 16245.j do not have complex multiplication.

Modular form 16245.2.a.j

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} + 4 q^{7} - 3 q^{8} - q^{10} - 4 q^{11} - 2 q^{13} + 4 q^{14} - q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.