Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 16245.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
16245.j1 | 16245c3 | \([1, -1, 0, -19518435, -33185583684]\) | \(23977812996389881/146611125\) | \(5028240714679045125\) | \([2]\) | \(829440\) | \(2.7757\) | |
16245.j2 | 16245c4 | \([1, -1, 0, -4020705, 2513992950]\) | \(209595169258201/41748046875\) | \(1431809687397216796875\) | \([2]\) | \(829440\) | \(2.7757\) | |
16245.j3 | 16245c2 | \([1, -1, 0, -1242810, -497800809]\) | \(6189976379881/456890625\) | \(15669725218875140625\) | \([2, 2]\) | \(414720\) | \(2.4291\) | |
16245.j4 | 16245c1 | \([1, -1, 0, 73035, -34360200]\) | \(1256216039/15582375\) | \(-534420102201636375\) | \([2]\) | \(207360\) | \(2.0825\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 16245.j have rank \(1\).
Complex multiplication
The elliptic curves in class 16245.j do not have complex multiplication.Modular form 16245.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.