Properties

Label 16245.i
Number of curves $2$
Conductor $16245$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.i1 16245e2 \([0, 0, 1, -946542, 263932605]\) \(7575076864/1953125\) \(24181674720486328125\) \([3]\) \(344736\) \(2.4286\)  
16245.i2 16245e1 \([0, 0, 1, -329232, -72686538]\) \(318767104/125\) \(1547627182111125\) \([]\) \(114912\) \(1.8793\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16245.i have rank \(1\).

Complex multiplication

The elliptic curves in class 16245.i do not have complex multiplication.

Modular form 16245.2.a.i

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} - 4 q^{7} - 3 q^{11} + 2 q^{13} + 4 q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.