Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 16245.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
16245.i1 | 16245e2 | \([0, 0, 1, -946542, 263932605]\) | \(7575076864/1953125\) | \(24181674720486328125\) | \([3]\) | \(344736\) | \(2.4286\) | |
16245.i2 | 16245e1 | \([0, 0, 1, -329232, -72686538]\) | \(318767104/125\) | \(1547627182111125\) | \([]\) | \(114912\) | \(1.8793\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 16245.i have rank \(1\).
Complex multiplication
The elliptic curves in class 16245.i do not have complex multiplication.Modular form 16245.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.