Properties

Label 16245.h
Number of curves $2$
Conductor $16245$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.h1 16245j2 \([0, 0, 1, -2622, -38480]\) \(7575076864/1953125\) \(514001953125\) \([]\) \(18144\) \(0.95639\)  
16245.h2 16245j1 \([0, 0, 1, -912, 10597]\) \(318767104/125\) \(32896125\) \([]\) \(6048\) \(0.40708\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16245.h have rank \(2\).

Complex multiplication

The elliptic curves in class 16245.h do not have complex multiplication.

Modular form 16245.2.a.h

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} - 4 q^{7} - 3 q^{11} - 2 q^{13} + 4 q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.