Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 16245.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
16245.g1 | 16245b2 | \([0, 0, 1, -155838, -23678717]\) | \(1590409933520896/45\) | \(11842605\) | \([]\) | \(31104\) | \(1.3179\) | |
16245.g2 | 16245b1 | \([0, 0, 1, -1938, -31982]\) | \(3058794496/91125\) | \(23981275125\) | \([]\) | \(10368\) | \(0.76855\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 16245.g have rank \(1\).
Complex multiplication
The elliptic curves in class 16245.g do not have complex multiplication.Modular form 16245.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.