Properties

Label 16245.f
Number of curves $2$
Conductor $16245$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.f1 16245a2 \([0, 0, 1, -56257518, 162412318188]\) \(1590409933520896/45\) \(557145785560005\) \([3]\) \(590976\) \(2.7901\)  
16245.f2 16245a1 \([0, 0, 1, -699618, 219362823]\) \(3058794496/91125\) \(1128220215759010125\) \([]\) \(196992\) \(2.2408\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16245.f have rank \(0\).

Complex multiplication

The elliptic curves in class 16245.f do not have complex multiplication.

Modular form 16245.2.a.f

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} - q^{5} + 2 q^{7} + 3 q^{11} - 4 q^{13} + 4 q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.