Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 16245.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
16245.e1 | 16245g2 | \([1, -1, 1, -752, -6096]\) | \(9393931/2025\) | \(10125427275\) | \([2]\) | \(10240\) | \(0.63392\) | |
16245.e2 | 16245g1 | \([1, -1, 1, 103, -624]\) | \(24389/45\) | \(-225009495\) | \([2]\) | \(5120\) | \(0.28735\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 16245.e have rank \(1\).
Complex multiplication
The elliptic curves in class 16245.e do not have complex multiplication.Modular form 16245.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.