Properties

Label 16245.e
Number of curves $2$
Conductor $16245$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.e1 16245g2 \([1, -1, 1, -752, -6096]\) \(9393931/2025\) \(10125427275\) \([2]\) \(10240\) \(0.63392\)  
16245.e2 16245g1 \([1, -1, 1, 103, -624]\) \(24389/45\) \(-225009495\) \([2]\) \(5120\) \(0.28735\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16245.e have rank \(1\).

Complex multiplication

The elliptic curves in class 16245.e do not have complex multiplication.

Modular form 16245.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{5} + 2 q^{7} + 3 q^{8} - q^{10} + 4 q^{11} - 2 q^{13} - 2 q^{14} - q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.