Show commands for:
SageMath
sage: E = EllipticCurve("16245.c1")
sage: E.isogeny_class()
Elliptic curves in class 16245.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
16245.c1 | 16245d7 | [1, -1, 1, -7017908, -7154068534] | [2] | 221184 | |
16245.c2 | 16245d5 | [1, -1, 1, -438683, -111666094] | [2, 2] | 110592 | |
16245.c3 | 16245d8 | [1, -1, 1, -357458, -154357954] | [2] | 221184 | |
16245.c4 | 16245d4 | [1, -1, 1, -259988, 51089312] | [2] | 55296 | |
16245.c5 | 16245d3 | [1, -1, 1, -32558, -1037644] | [2, 2] | 55296 | |
16245.c6 | 16245d2 | [1, -1, 1, -16313, 794792] | [2, 2] | 27648 | |
16245.c7 | 16245d1 | [1, -1, 1, -68, 34526] | [2] | 13824 | \(\Gamma_0(N)\)-optimal |
16245.c8 | 16245d6 | [1, -1, 1, 113647, -7880038] | [2] | 110592 |
Rank
sage: E.rank()
The elliptic curves in class 16245.c have rank \(1\).
Modular form 16245.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.