Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 162.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
162.a1 | 162a1 | \([1, -1, 0, -6, 8]\) | \(-35937/4\) | \(-2916\) | \([3]\) | \(12\) | \(-0.59781\) | \(\Gamma_0(N)\)-optimal |
162.a2 | 162a2 | \([1, -1, 0, 39, -19]\) | \(109503/64\) | \(-3779136\) | \([]\) | \(36\) | \(-0.048500\) |
Rank
sage: E.rank()
The elliptic curves in class 162.a have rank \(1\).
Complex multiplication
The elliptic curves in class 162.a do not have complex multiplication.Modular form 162.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.