# Properties

 Label 1610g2 Conductor $1610$ Discriminant $4.782\times 10^{14}$ j-invariant $$\frac{1753007192038126081}{478174101507200}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 0, -25120, -1116288])

gp: E = ellinit([1, 0, 0, -25120, -1116288])

magma: E := EllipticCurve([1, 0, 0, -25120, -1116288]);

## Simplified equation

 $$y^2+xy=x^3-25120x-1116288$$ y^2+xy=x^3-25120x-1116288 (homogenize, simplify) $$y^2z+xyz=x^3-25120xz^2-1116288z^3$$ y^2z+xyz=x^3-25120xz^2-1116288z^3 (dehomogenize, simplify) $$y^2=x^3-32555547x-51983866314$$ y^2=x^3-32555547x-51983866314 (homogenize, minimize)

## Mordell-Weil group structure

$$\Z \oplus \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(-116, 548\right)$$ (-116, 548) $\hat{h}(P)$ ≈ $0.11671106152303376730012949101$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-\frac{513}{4}, \frac{513}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-116, 548\right)$$, $$\left(-116, -432\right)$$, $$\left(-88, 688\right)$$, $$\left(-88, -600\right)$$, $$\left(-56, 368\right)$$, $$\left(-56, -312\right)$$, $$\left(178, 156\right)$$, $$\left(178, -334\right)$$, $$\left(234, 2298\right)$$, $$\left(234, -2532\right)$$, $$\left(472, 9368\right)$$, $$\left(472, -9840\right)$$, $$\left(1844, 77968\right)$$, $$\left(1844, -79812\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$1610$$ = $2 \cdot 5 \cdot 7 \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $478174101507200$ = $2^{7} \cdot 5^{2} \cdot 7^{10} \cdot 23^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{1753007192038126081}{478174101507200}$$ = $2^{-7} \cdot 5^{-2} \cdot 7^{-10} \cdot 23^{-2} \cdot 223^{3} \cdot 5407^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.5245330948677590166923289606\dots$ Stable Faltings height: $1.5245330948677590166923289606\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.11671106152303376730012949101\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.38698913100037969472325701829\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $280$  = $7\cdot2\cdot( 2 \cdot 5 )\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $3.1616138593851482065737544339$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - 2 q^{3} + q^{4} + q^{5} - 2 q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 2 q^{11} - 2 q^{12} - 4 q^{13} + q^{14} - 2 q^{15} + q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 8960 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $7$ $I_{7}$ Split multiplicative -1 1 7 7
$5$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$7$ $10$ $I_{10}$ Split multiplicative -1 1 10 10
$23$ $2$ $I_{2}$ Split multiplicative -1 1 2 2

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.6.0.6

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split ord split split ord ord ord ord split ord ord ord ord ord ord 5 1 6 2 1 1 1 1 2 1 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 1610g consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{2})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $4$ 4.0.829472.1 $$\Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.44033523122176.1 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.