Properties

Label 1600u
Number of curves $2$
Conductor $1600$
CM \(\Q(\sqrt{-1}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1600u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 1600u has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 1600.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} - 4 q^{13} + 8 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1600u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
1600.l2 1600u1 \([0, 0, 0, 125, 0]\) \(1728\) \(-125000000\) \([2]\) \(320\) \(0.24312\) \(\Gamma_0(N)\)-optimal \(-4\)
1600.l1 1600u2 \([0, 0, 0, -500, 0]\) \(1728\) \(8000000000\) \([2]\) \(640\) \(0.58969\)   \(-4\)