Show commands: SageMath
Rank
The elliptic curves in class 1600r have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1600r do not have complex multiplication.Modular form 1600.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1600r
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1600.w3 | 1600r1 | \([0, -1, 0, -133, -363]\) | \(16384/5\) | \(80000000\) | \([2]\) | \(384\) | \(0.22134\) | \(\Gamma_0(N)\)-optimal |
| 1600.w4 | 1600r2 | \([0, -1, 0, 367, -2863]\) | \(21296/25\) | \(-6400000000\) | \([2]\) | \(768\) | \(0.56792\) | |
| 1600.w1 | 1600r3 | \([0, -1, 0, -4133, 103637]\) | \(488095744/125\) | \(2000000000\) | \([2]\) | \(1152\) | \(0.77065\) | |
| 1600.w2 | 1600r4 | \([0, -1, 0, -3633, 129137]\) | \(-20720464/15625\) | \(-4000000000000\) | \([2]\) | \(2304\) | \(1.1172\) |