Properties

Label 160080.l2
Conductor 160080
Discriminant -6642157178880
j-invariant \( -\frac{4681768588489}{1621620405} \)
CM no
Rank 0
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, -1, 0, -5576, -200784]); // or
 
magma: E := EllipticCurve("160080bx2");
 
sage: E = EllipticCurve([0, -1, 0, -5576, -200784]) # or
 
sage: E = EllipticCurve("160080bx2")
 
gp: E = ellinit([0, -1, 0, -5576, -200784]) \\ or
 
gp: E = ellinit("160080bx2")
 

\( y^2 = x^{3} - x^{2} - 5576 x - 200784 \)

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 

\( \left(89, 0\right) \)

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 

\( \left(89, 0\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 160080 \)  =  \(2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(-6642157178880 \)  =  \(-1 \cdot 2^{12} \cdot 3^{6} \cdot 5 \cdot 23^{2} \cdot 29^{2} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( -\frac{4681768588489}{1621620405} \)  =  \(-1 \cdot 3^{-6} \cdot 5^{-1} \cdot 23^{-2} \cdot 29^{-2} \cdot 16729^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(0\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.271495660034\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 16 \)  = \( 2\cdot2\cdot1\cdot2\cdot2 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 160080.2.a.l

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q - q^{3} - q^{5} + q^{9} - 2q^{11} + 2q^{13} + q^{15} - 4q^{17} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 221184
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L(E,1) \) ≈ \( 1.08598264014 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_4^{*} \) Additive -1 4 12 0
\(3\) \(2\) \( I_{6} \) Non-split multiplicative 1 1 6 6
\(5\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(23\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(29\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 160080.l consists of 2 curves linked by isogenies of degree 2.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-5}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
4 \( x^{4} - 133 x^{2} - 80 \) \(\Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.