Show commands: SageMath
Rank
The elliptic curves in class 1600.m have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 1600.m has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 1600.2.a.m
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1600.m
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 1600.m1 | 1600t2 | \([0, 0, 0, -20, 0]\) | \(1728\) | \(512000\) | \([2]\) | \(128\) | \(-0.21503\) | \(-4\) | |
| 1600.m2 | 1600t1 | \([0, 0, 0, 5, 0]\) | \(1728\) | \(-8000\) | \([2]\) | \(64\) | \(-0.56160\) | \(\Gamma_0(N)\)-optimal | \(-4\) |