Show commands: SageMath
Rank
The elliptic curves in class 1600.i have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1600.i do not have complex multiplication.Modular form 1600.2.a.i
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 15 & 5 \\ 3 & 1 & 5 & 15 \\ 15 & 5 & 1 & 3 \\ 5 & 15 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1600.i
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1600.i1 | 1600q4 | \([0, -1, 0, -200833, 34709537]\) | \(-349938025/8\) | \(-20480000000000\) | \([]\) | \(5760\) | \(1.6676\) | |
| 1600.i2 | 1600q3 | \([0, -1, 0, -833, 109537]\) | \(-25/2\) | \(-5120000000000\) | \([]\) | \(1920\) | \(1.1183\) | |
| 1600.i3 | 1600q1 | \([0, -1, 0, -193, -1183]\) | \(-121945/32\) | \(-209715200\) | \([]\) | \(384\) | \(0.31362\) | \(\Gamma_0(N)\)-optimal |
| 1600.i4 | 1600q2 | \([0, -1, 0, 1407, 8737]\) | \(46969655/32768\) | \(-214748364800\) | \([]\) | \(1152\) | \(0.86293\) |