Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1600.a1 1600.a \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.334574362$ $[0, 0, 0, 20, -80]$ \(y^2=x^3+20x-80\) 8.2.0.a.1 $[(6, 16)]$
1600.b1 1600.b \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.177662472$ $[0, 0, 0, 500, 10000]$ \(y^2=x^3+500x+10000\) 8.2.0.a.1 $[(50, 400)]$
1600.c1 1600.c \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.685790823$ $[0, 1, 0, -4133, -103637]$ \(y^2=x^3+x^2-4133x-103637\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 8.12.0-4.b.1.1, $\ldots$ $[(143, 1500)]$
1600.c2 1600.c \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $3.371581646$ $[0, 1, 0, -3633, -129137]$ \(y^2=x^3+x^2-3633x-129137\) 2.3.0.a.1, 3.4.0.a.1, 4.12.0-4.a.1.2, 6.12.0.a.1, 12.48.0-12.d.1.2, $\ldots$ $[(253, 3900)]$
1600.c3 1600.c \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.561930274$ $[0, 1, 0, -133, 363]$ \(y^2=x^3+x^2-133x+363\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 8.12.0-4.b.1.1, $\ldots$ $[(-2, 25)]$
1600.c4 1600.c \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.123860548$ $[0, 1, 0, 367, 2863]$ \(y^2=x^3+x^2+367x+2863\) 2.3.0.a.1, 3.4.0.a.1, 4.12.0-4.a.1.2, 6.12.0.a.1, 12.48.0-12.d.1.2, $\ldots$ $[(13, 100)]$
1600.d1 1600.d \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.470740263$ $[0, 1, 0, -113, -497]$ \(y^2=x^3+x^2-113x-497\) 2.3.0.a.1, 4.6.0.d.1, 8.24.0.bl.2, 10.6.0.a.1, 16.96.3.ey.1, $\ldots$ $[(-6, 1)]$
1600.d2 1600.d \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.735370131$ $[0, 1, 0, -13, 3]$ \(y^2=x^3+x^2-13x+3\) 2.3.0.a.1, 4.6.0.d.1, 8.24.0.bl.1, 10.6.0.a.1, 16.96.3.ey.2, $\ldots$ $[(-2, 5)]$
1600.e1 1600.e \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.632561593$ $[0, 1, 0, -633, 5863]$ \(y^2=x^3+x^2-633x+5863\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 10.6.0.a.1, 20.12.0.e.1, $\ldots$ $[(18, 25)]$
1600.e2 1600.e \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.265123187$ $[0, 1, 0, -8, 238]$ \(y^2=x^3+x^2-8x+238\) 2.3.0.a.1, 4.12.0-4.a.1.2, 20.24.0-20.d.1.2, 40.48.0-40.t.1.3 $[(13, 50)]$
1600.f1 1600.f \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2833, 56463]$ \(y^2=x^3+x^2-2833x+56463\) 2.3.0.a.1, 4.6.0.d.1, 8.24.0.bl.2, 10.6.0.a.1, 16.96.3.ey.1, $\ldots$ $[ ]$
1600.f2 1600.f \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -333, -1037]$ \(y^2=x^3+x^2-333x-1037\) 2.3.0.a.1, 4.6.0.d.1, 8.24.0.bl.1, 10.6.0.a.1, 16.96.3.ey.2, $\ldots$ $[ ]$
1600.g1 1600.g \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -833, -10463]$ \(y^2=x^3-x^2-833x-10463\) 5.15.0.a.1, 8.2.0.a.1, 20.30.0.b.1, 40.60.3.u.1 $[ ]$
1600.h1 1600.h \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.218002349$ $[0, -1, 0, -33, 97]$ \(y^2=x^3-x^2-33x+97\) 5.15.0.a.1, 8.2.0.a.1, 20.30.0.b.1, 40.60.3.u.1 $[(1, 8)]$
1600.i1 1600.i \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -200833, 34709537]$ \(y^2=x^3-x^2-200833x+34709537\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 10.24.0-5.a.2.2, 15.96.1.a.1, $\ldots$ $[ ]$
1600.i2 1600.i \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -833, 109537]$ \(y^2=x^3-x^2-833x+109537\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 10.24.0-5.a.2.2, 15.96.1.a.2, $\ldots$ $[ ]$
1600.i3 1600.i \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -193, -1183]$ \(y^2=x^3-x^2-193x-1183\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 10.24.0-5.a.1.1, 15.96.1.a.4, $\ldots$ $[ ]$
1600.i4 1600.i \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1407, 8737]$ \(y^2=x^3-x^2+1407x+8737\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 10.24.0-5.a.1.1, 15.96.1.a.3, $\ldots$ $[ ]$
1600.j1 1600.j \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -8033, -274463]$ \(y^2=x^3-x^2-8033x-274463\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 12.8.0-3.a.1.4, 15.96.1.a.1, $\ldots$ $[ ]$
1600.j2 1600.j \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4833, 157537]$ \(y^2=x^3-x^2-4833x+157537\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.3, 15.96.1.a.4, $\ldots$ $[ ]$
1600.j3 1600.j \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -33, -863]$ \(y^2=x^3-x^2-33x-863\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 12.8.0-3.a.1.3, 15.96.1.a.2, $\ldots$ $[ ]$
1600.j4 1600.j \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 35167, -1162463]$ \(y^2=x^3-x^2+35167x-1162463\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.4, 15.96.1.a.3, $\ldots$ $[ ]$
1600.k1 1600.k \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10700, 426000]$ \(y^2=x^3-10700x+426000\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.o.1.2, 10.6.0.a.1, 16.48.0-16.i.1.2, $\ldots$ $[ ]$
1600.k2 1600.k \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -700, 6000]$ \(y^2=x^3-700x+6000\) 2.6.0.a.1, 4.12.0.a.1, 8.48.0-8.g.1.3, 20.24.0.b.1, 40.192.3-40.bk.1.7 $[ ]$
1600.k3 1600.k \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -200, -1000]$ \(y^2=x^3-200x-1000\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.o.1.4, 10.6.0.a.1, 16.48.0-16.i.1.4, $\ldots$ $[ ]$
1600.k4 1600.k \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1300, 34000]$ \(y^2=x^3+1300x+34000\) 2.3.0.a.1, 4.24.0.c.1, 8.48.0-4.c.1.3, 40.96.1-40.dk.1.3, 80.192.3.? $[ ]$
1600.l1 1600.l \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $2.491033695$ $[0, 0, 0, -500, 0]$ \(y^2=x^3-500x\) $[(-4, 44)]$
1600.l2 1600.l \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $4.982067391$ $[0, 0, 0, 125, 0]$ \(y^2=x^3+125x\) $[(121/2, 1419/2)]$
1600.m1 1600.m \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $1.122024306$ $[0, 0, 0, -20, 0]$ \(y^2=x^3-20x\) $[(5, 5)]$
1600.m2 1600.m \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $-4$ $2.244048612$ $[0, 0, 0, 5, 0]$ \(y^2=x^3+5x\) $[(20, 90)]$
1600.n1 1600.n \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-16$ $1$ $[0, 0, 0, -1100, -14000]$ \(y^2=x^3-1100x-14000\) $[ ]$
1600.n2 1600.n \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-16$ $1$ $[0, 0, 0, -1100, 14000]$ \(y^2=x^3-1100x+14000\) $[ ]$
1600.n3 1600.n \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $1$ $[0, 0, 0, -100, 0]$ \(y^2=x^3-100x\) $[ ]$
1600.n4 1600.n \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-4$ $1$ $[0, 0, 0, 25, 0]$ \(y^2=x^3+25x\) $[ ]$
1600.o1 1600.o \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $6.193893206$ $[0, 0, 0, -10700, -426000]$ \(y^2=x^3-10700x-426000\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.o.1.4, 10.6.0.a.1, 16.48.0-16.i.1.4, $\ldots$ $[(4360/3, 280700/3)]$
1600.o2 1600.o \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.096946603$ $[0, 0, 0, -700, -6000]$ \(y^2=x^3-700x-6000\) 2.6.0.a.1, 4.12.0.a.1, 8.48.0-8.g.1.3, 20.24.0.b.1, 40.192.3-40.bk.1.3 $[(-19, 21)]$
1600.o3 1600.o \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.548473301$ $[0, 0, 0, -200, 1000]$ \(y^2=x^3-200x+1000\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.o.1.2, 10.6.0.a.1, 16.48.0-16.i.1.2, $\ldots$ $[(6, 4)]$
1600.o4 1600.o \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.548473301$ $[0, 0, 0, 1300, -34000]$ \(y^2=x^3+1300x-34000\) 2.3.0.a.1, 4.24.0.c.1, 8.48.0-4.c.1.3, 40.96.1-40.dk.1.3, 80.192.3.? $[(110, 1200)]$
1600.p1 1600.p \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.181367514$ $[0, 1, 0, -8033, 274463]$ \(y^2=x^3+x^2-8033x+274463\) 3.4.0.a.1, 5.12.0.a.2, 6.8.0-3.a.1.2, 8.2.0.a.1, 10.24.0-5.a.2.1, $\ldots$ $[(23, 320)]$
1600.p2 1600.p \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2.720512710$ $[0, 1, 0, -4833, -157537]$ \(y^2=x^3+x^2-4833x-157537\) 3.4.0.a.1, 5.12.0.a.1, 6.8.0-3.a.1.1, 8.2.0.a.1, 10.24.0-5.a.1.2, $\ldots$ $[(247, 3712)]$
1600.p3 1600.p \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.544102542$ $[0, 1, 0, -33, 863]$ \(y^2=x^3+x^2-33x+863\) 3.4.0.a.1, 5.12.0.a.2, 6.8.0-3.a.1.1, 8.2.0.a.1, 10.24.0-5.a.2.1, $\ldots$ $[(7, 32)]$
1600.p4 1600.p \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.906837570$ $[0, 1, 0, 35167, 1162463]$ \(y^2=x^3+x^2+35167x+1162463\) 3.4.0.a.1, 5.12.0.a.1, 6.8.0-3.a.1.2, 8.2.0.a.1, 10.24.0-5.a.1.2, $\ldots$ $[(2183, 102400)]$
1600.q1 1600.q \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $6.862779968$ $[0, 1, 0, -200833, -34709537]$ \(y^2=x^3+x^2-200833x-34709537\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 20.24.0-5.a.2.4, $\ldots$ $[(10531/3, 986048/3)]$
1600.q2 1600.q \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2.287593322$ $[0, 1, 0, -833, -109537]$ \(y^2=x^3+x^2-833x-109537\) 3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.2, 20.24.0-5.a.2.4, $\ldots$ $[(59, 224)]$
1600.q3 1600.q \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.457518664$ $[0, 1, 0, -193, 1183]$ \(y^2=x^3+x^2-193x+1183\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 20.24.0-5.a.1.4, $\ldots$ $[(27, 128)]$
1600.q4 1600.q \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.372555993$ $[0, 1, 0, 1407, -8737]$ \(y^2=x^3+x^2+1407x-8737\) 3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.3, 20.24.0-5.a.1.4, $\ldots$ $[(163/3, 4096/3)]$
1600.r1 1600.r \( 2^{6} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.818145541$ $[0, 1, 0, -33, -97]$ \(y^2=x^3+x^2-33x-97\) 5.15.0.a.1, 8.2.0.a.1, 20.30.0.b.1, 40.60.3.u.1 $[(7, 8)]$
1600.s1 1600.s \( 2^{6} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -833, 10463]$ \(y^2=x^3+x^2-833x+10463\) 5.15.0.a.1, 8.2.0.a.1, 20.30.0.b.1, 40.60.3.u.1 $[ ]$
1600.t1 1600.t \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.820420117$ $[0, -1, 0, -633, -5863]$ \(y^2=x^3-x^2-633x-5863\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 10.6.0.a.1, 20.12.0.e.1, $\ldots$ $[(32, 75)]$
1600.t2 1600.t \( 2^{6} \cdot 5^{2} \) $1$ $\Z/2\Z$ $3.640840235$ $[0, -1, 0, -8, -238]$ \(y^2=x^3-x^2-8x-238\) 2.3.0.a.1, 4.12.0-4.a.1.2, 20.24.0-20.d.1.2, 40.48.0-40.t.1.8 $[(187, 2550)]$
Next   displayed columns for results