Properties

Label 159936df
Number of curves $4$
Conductor $159936$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("df1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 159936df have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 159936df do not have complex multiplication.

Modular form 159936.2.a.df

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 159936df

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159936.bn3 159936df1 \([0, -1, 0, -6488204, 6363229650]\) \(4011705594213827392/52680152007\) \(396657101022178752\) \([2]\) \(3538944\) \(2.5209\) \(\Gamma_0(N)\)-optimal
159936.bn2 159936df2 \([0, -1, 0, -6666809, 5994553209]\) \(68003243639904448/7163272192041\) \(3451911414257383870464\) \([2, 2]\) \(7077888\) \(2.8675\)  
159936.bn4 159936df3 \([0, -1, 0, 8627071, 29470659009]\) \(18419405270942584/108003564029403\) \(-416366962425699812868096\) \([2]\) \(14155776\) \(3.2141\)  
159936.bn1 159936df4 \([0, -1, 0, -24818369, -41079702495]\) \(438536015880092936/64602489661101\) \(249050507055558542917632\) \([2]\) \(14155776\) \(3.2141\)