Properties

Label 159936.if
Number of curves $1$
Conductor $159936$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("if1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 159936.if

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159936.if1 159936bd1 \([0, 1, 0, 12033215, 204951354047]\) \(15001431500460925919/1421324083670155776\) \(-18256987448891836471443456\) \([]\) \(36495360\) \(3.5267\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 159936.if1 has rank \(0\).

Complex multiplication

The elliptic curves in class 159936.if do not have complex multiplication.

Modular form 159936.2.a.if

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - 6q^{11} + q^{15} - q^{17} + 3q^{19} + O(q^{20})\)  Toggle raw display