Show commands: SageMath
Rank
The elliptic curves in class 159600gy have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 159600gy do not have complex multiplication.Modular form 159600.2.a.gy
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 159600gy
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 159600.bo4 | 159600gy1 | \([0, -1, 0, -108983, 5460462]\) | \(572616640141312/280535480757\) | \(70133870189250000\) | \([2]\) | \(1572864\) | \(1.9257\) | \(\Gamma_0(N)\)-optimal |
| 159600.bo2 | 159600gy2 | \([0, -1, 0, -929108, -340632288]\) | \(22174957026242512/278654127129\) | \(1114616508516000000\) | \([2, 2]\) | \(3145728\) | \(2.2723\) | |
| 159600.bo3 | 159600gy3 | \([0, -1, 0, -159608, -888516288]\) | \(-28104147578308/21301741002339\) | \(-340827856037424000000\) | \([2]\) | \(6291456\) | \(2.6189\) | |
| 159600.bo1 | 159600gy4 | \([0, -1, 0, -14820608, -21955806288]\) | \(22501000029889239268/3620708343\) | \(57931333488000000\) | \([2]\) | \(6291456\) | \(2.6189\) |