Properties

Label 159120bx
Number of curves 2
Conductor 159120
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("159120.bp1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 159120bx

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
159120.bp1 159120bx1 [0, 0, 0, -1961283, 1045150018] [2] 2949120 \(\Gamma_0(N)\)-optimal
159120.bp2 159120bx2 [0, 0, 0, -302403, 2756782402] [2] 5898240  

Rank

sage: E.rank()
 

The elliptic curves in class 159120bx have rank \(0\).

Modular form 159120.2.a.bp

sage: E.q_eigenform(10)
 
\( q - q^{5} + 2q^{7} - q^{13} + q^{17} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.