Properties

Label 158400.nt
Number of curves 4
Conductor 158400
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("158400.nt1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 158400.nt

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
158400.nt1 158400ni4 [0, 0, 0, -6390300, 6217702000] [2] 3981312  
158400.nt2 158400ni3 [0, 0, 0, -400800, 96433000] [2] 1990656  
158400.nt3 158400ni2 [0, 0, 0, -90300, 5902000] [2] 1327104  
158400.nt4 158400ni1 [0, 0, 0, -40800, -3107000] [2] 663552 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 158400.nt have rank \(0\).

Modular form 158400.2.a.nt

sage: E.q_eigenform(10)
 
\( q + 4q^{7} - q^{11} - 4q^{13} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.