# Properties

 Label 158400.bc2 Conductor 158400 Discriminant 103317437520000000 j-invariant $$\frac{610462990336}{8857805}$$ CM no Rank 2 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -400800, -96433000]) # or

sage: E = EllipticCurve("158400cc3")

gp: E = ellinit([0, 0, 0, -400800, -96433000]) \\ or

gp: E = ellinit("158400cc3")

magma: E := EllipticCurve([0, 0, 0, -400800, -96433000]); // or

magma: E := EllipticCurve("158400cc3");

$$y^2 = x^{3} - 400800 x - 96433000$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(22510, -3375900\right)$$ $$\left(-\frac{97055}{289}, \frac{2655675}{4913}\right)$$ $$\hat{h}(P)$$ ≈ 3.0370375644149705 8.54707474076731

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(730, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(-370,\pm 1100)$$, $$(-359,\pm 1089)$$, $$\left(730, 0\right)$$, $$(785,\pm 8525)$$, $$(910,\pm 17100)$$, $$(7385,\pm 632225)$$, $$(22510,\pm 3375900)$$, $$(40330,\pm 8098200)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$158400$$ = $$2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$103317437520000000$$ = $$2^{10} \cdot 3^{6} \cdot 5^{7} \cdot 11^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{610462990336}{8857805}$$ = $$2^{17} \cdot 5^{-1} \cdot 11^{-6} \cdot 167^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.45559846501$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.189910616746$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$96$$  = $$2\cdot2\cdot2^{2}\cdot( 2 \cdot 3 )$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 158400.2.a.bc

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 4q^{7} + q^{11} - 4q^{13} - 4q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1990656 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$11.1922612553$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_0^{*}$$ Additive -1 6 10 0
$$3$$ $$2$$ $$I_0^{*}$$ Additive -1 2 6 0
$$5$$ $$4$$ $$I_1^{*}$$ Additive 1 2 7 1
$$11$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 158400.bc consists of 4 curves linked by isogenies of degrees dividing 6.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{5})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{-10})$$ $$\Z/6\Z$$ Not in database
4 $$\Q(\sqrt{-2}, \sqrt{5})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
4.4.1393920.1 $$\Z/4\Z$$ Not in database
6 6.2.172800000.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.