Properties

Label 1584.q
Number of curves $1$
Conductor $1584$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1584.q1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1584.q do not have complex multiplication.

Modular form 1584.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} + 2 q^{7} - q^{11} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1584.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1584.q1 1584d1 \([0, 0, 0, -36, 108]\) \(-27648/11\) \(-2052864\) \([]\) \(224\) \(-0.079906\) \(\Gamma_0(N)\)-optimal