Learn more

Refine search


Results (29 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1575.a1 1575.a \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $4.245874128$ $[0, 0, 1, -33375, -2358594]$ \(y^2+y=x^3-33375x-2358594\) 5.12.0.a.1, 15.24.0-5.a.1.2, 70.24.1.d.1, 210.48.1.? $[(675, 16812)]$
1575.a2 1575.a \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.849174825$ $[0, 0, 1, 375, 3906]$ \(y^2+y=x^3+375x+3906\) 5.12.0.a.2, 15.24.0-5.a.2.2, 70.24.1.d.2, 210.48.1.? $[(0, 62)]$
1575.b1 1575.b \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -14555, -489428]$ \(y^2+xy+y=x^3-x^2-14555x-489428\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ $[ ]$
1575.b2 1575.b \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 2320, -50678]$ \(y^2+xy+y=x^3-x^2+2320x-50678\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ $[ ]$
1575.c1 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.945149794$ $[1, -1, 1, -176405, 28561722]$ \(y^2+xy+y=x^3-x^2-176405x+28561722\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 16.24.0.e.2, $\ldots$ $[(243, -115)]$
1575.c2 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.472574897$ $[1, -1, 1, -11030, 447972]$ \(y^2+xy+y=x^3-x^2-11030x+447972\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 12.24.0.c.1, 20.24.0-4.b.1.2, $\ldots$ $[(68, 60)]$
1575.c3 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.890299589$ $[1, -1, 1, -8780, -312528]$ \(y^2+xy+y=x^3-x^2-8780x-312528\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 28.12.0.h.1, 48.48.0.bf.1, $\ldots$ $[(-51, 0)]$
1575.c4 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.236287448$ $[1, -1, 1, -7655, 724722]$ \(y^2+xy+y=x^3-x^2-7655x+724722\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, $\ldots$ $[(14, 780)]$
1575.c5 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.945149794$ $[1, -1, 1, -905, 2472]$ \(y^2+xy+y=x^3-x^2-905x+2472\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0.w.2, 28.24.0.c.1, $\ldots$ $[(-6, 90)]$
1575.c6 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.890299589$ $[1, -1, 1, 220, 222]$ \(y^2+xy+y=x^3-x^2+220x+222\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0.e.1, $\ldots$ $[(8, 45)]$
1575.d1 1575.d \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.215604345$ $[1, -1, 1, -65, 162]$ \(y^2+xy+y=x^3-x^2-65x+162\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ $[(8, 6)]$
1575.d2 1575.d \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.431208691$ $[1, -1, 1, 10, 12]$ \(y^2+xy+y=x^3-x^2+10x+12\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ $[(0, 3)]$
1575.e1 1575.e \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4055, -95178]$ \(y^2+xy+y=x^3-x^2-4055x-95178\) 2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? $[ ]$
1575.e2 1575.e \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 1570, -342678]$ \(y^2+xy+y=x^3-x^2+1570x-342678\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[ ]$
1575.f1 1575.f \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -29550, 2045281]$ \(y^2+y=x^3-29550x+2045281\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 42.8.0-3.a.1.2, 45.24.0-9.a.1.1, $\ldots$ $[ ]$
1575.f2 1575.f \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -300, -2219]$ \(y^2+y=x^3-300x-2219\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 42.8.0-3.a.1.1, 45.24.0-9.a.1.2, $\ldots$ $[ ]$
1575.f3 1575.f \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 1950, 5656]$ \(y^2+y=x^3+1950x+5656\) 3.12.0.a.1, 15.24.0-3.a.1.1, 42.24.0-3.a.1.1, 63.36.0.b.1, 70.2.0.a.1, $\ldots$ $[ ]$
1575.g1 1575.g \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1617, 18666]$ \(y^2+xy=x^3-x^2-1617x+18666\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ $[ ]$
1575.g2 1575.g \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 258, 1791]$ \(y^2+xy=x^3-x^2+258x+1791\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ $[ ]$
1575.h1 1575.h \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -25317, 1556716]$ \(y^2+xy=x^3-x^2-25317x+1556716\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.ba.1, 42.6.0.a.1, $\ldots$ $[ ]$
1575.h2 1575.h \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -1692, 21091]$ \(y^2+xy=x^3-x^2-1692x+21091\) 2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.a.1, 28.12.0-2.a.1.2, 60.24.0-20.a.1.2, $\ldots$ $[ ]$
1575.h3 1575.h \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -567, -4784]$ \(y^2+xy=x^3-x^2-567x-4784\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.ba.1, 56.12.0-4.c.1.3, $\ldots$ $[ ]$
1575.h4 1575.h \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 3933, 127966]$ \(y^2+xy=x^3-x^2+3933x+127966\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 20.12.0.h.1, 56.12.0-4.c.1.3, $\ldots$ $[ ]$
1575.i1 1575.i \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $2.513802022$ $[1, -1, 0, -162, -729]$ \(y^2+xy=x^3-x^2-162x-729\) 2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? $[(30, 129)]$
1575.i2 1575.i \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.256901011$ $[1, -1, 0, 63, -2754]$ \(y^2+xy=x^3-x^2+63x-2754\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[(18, 54)]$
1575.j1 1575.j \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $0.860136541$ $[1, -1, 0, -582, -3799]$ \(y^2+xy=x^3-x^2-582x-3799\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ $[(-16, 43)]$
1575.j2 1575.j \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z$ $1.720273082$ $[1, -1, 0, 93, -424]$ \(y^2+xy=x^3-x^2+93x-424\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ $[(8, 24)]$
1575.k1 1575.k \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -1335, -18869]$ \(y^2+y=x^3-1335x-18869\) 5.12.0.a.1, 15.24.0-5.a.1.1, 70.24.1.d.1, 210.48.1.? $[ ]$
1575.k2 1575.k \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 15, 31]$ \(y^2+y=x^3+15x+31\) 5.12.0.a.2, 15.24.0-5.a.2.1, 70.24.1.d.2, 210.48.1.? $[ ]$
  displayed columns for results