Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1575.a1 |
1575i2 |
1575.a |
1575i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$210$ |
$48$ |
$1$ |
$4.245874128$ |
$1$ |
|
$2$ |
$6000$ |
$1.408218$ |
$-2887553024/16807$ |
$0.98803$ |
$5.82318$ |
$[0, 0, 1, -33375, -2358594]$ |
\(y^2+y=x^3-33375x-2358594\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 70.24.1.d.1, 210.48.1.? |
$[(675, 16812)]$ |
1575.a2 |
1575i1 |
1575.a |
1575i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$0.849174825$ |
$1$ |
|
$4$ |
$1200$ |
$0.603499$ |
$4096/7$ |
$0.98030$ |
$4.08364$ |
$[0, 0, 1, 375, 3906]$ |
\(y^2+y=x^3+375x+3906\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 70.24.1.d.2, 210.48.1.? |
$[(0, 62)]$ |
1575.b1 |
1575b2 |
1575.b |
1575b |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{9} \cdot 5^{9} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$1680$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$1.387657$ |
$8869743/2401$ |
$0.92625$ |
$5.48364$ |
$[1, -1, 1, -14555, -489428]$ |
\(y^2+xy+y=x^3-x^2-14555x-489428\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ |
$[ ]$ |
1575.b2 |
1575b1 |
1575.b |
1575b |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{9} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$1680$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$1920$ |
$1.041084$ |
$35937/49$ |
$0.83942$ |
$4.77677$ |
$[1, -1, 1, 2320, -50678]$ |
\(y^2+xy+y=x^3-x^2+2320x-50678\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ |
$[ ]$ |
1575.c1 |
1575g5 |
1575.c |
1575g |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{7} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.13 |
2B |
$1680$ |
$192$ |
$1$ |
$0.945149794$ |
$1$ |
|
$4$ |
$4096$ |
$1.428230$ |
$53297461115137/147$ |
$1.05087$ |
$6.50029$ |
$[1, -1, 1, -176405, 28561722]$ |
\(y^2+xy+y=x^3-x^2-176405x+28561722\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 16.24.0.e.2, $\ldots$ |
$[(243, -115)]$ |
1575.c2 |
1575g4 |
1575.c |
1575g |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{8} \cdot 5^{6} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.18 |
2Cs |
$840$ |
$192$ |
$1$ |
$0.472574897$ |
$1$ |
|
$16$ |
$2048$ |
$1.081657$ |
$13027640977/21609$ |
$1.08149$ |
$5.37063$ |
$[1, -1, 1, -11030, 447972]$ |
\(y^2+xy+y=x^3-x^2-11030x+447972\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 12.24.0.c.1, 20.24.0-4.b.1.2, $\ldots$ |
$[(68, 60)]$ |
1575.c3 |
1575g3 |
1575.c |
1575g |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{14} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$1680$ |
$192$ |
$1$ |
$1.890299589$ |
$1$ |
|
$4$ |
$2048$ |
$1.081657$ |
$6570725617/45927$ |
$1.00160$ |
$5.27766$ |
$[1, -1, 1, -8780, -312528]$ |
\(y^2+xy+y=x^3-x^2-8780x-312528\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 28.12.0.h.1, 48.48.0.bf.1, $\ldots$ |
$[(-51, 0)]$ |
1575.c4 |
1575g6 |
1575.c |
1575g |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{7} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.90 |
2B |
$1680$ |
$192$ |
$1$ |
$0.236287448$ |
$1$ |
|
$12$ |
$4096$ |
$1.428230$ |
$-4354703137/17294403$ |
$1.04266$ |
$5.50189$ |
$[1, -1, 1, -7655, 724722]$ |
\(y^2+xy+y=x^3-x^2-7655x+724722\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, $\ldots$ |
$[(14, 780)]$ |
1575.c5 |
1575g2 |
1575.c |
1575g |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{10} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.10 |
2Cs |
$840$ |
$192$ |
$1$ |
$0.945149794$ |
$1$ |
|
$12$ |
$1024$ |
$0.735084$ |
$7189057/3969$ |
$1.14862$ |
$4.35158$ |
$[1, -1, 1, -905, 2472]$ |
\(y^2+xy+y=x^3-x^2-905x+2472\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0.w.2, 28.24.0.c.1, $\ldots$ |
$[(-6, 90)]$ |
1575.c6 |
1575g1 |
1575.c |
1575g |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{8} \cdot 5^{6} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.1 |
2B |
$1680$ |
$192$ |
$1$ |
$1.890299589$ |
$1$ |
|
$5$ |
$512$ |
$0.388510$ |
$103823/63$ |
$0.97868$ |
$3.77597$ |
$[1, -1, 1, 220, 222]$ |
\(y^2+xy+y=x^3-x^2+220x+222\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0.e.1, $\ldots$ |
$[(8, 45)]$ |
1575.d1 |
1575d2 |
1575.d |
1575d |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{3} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$1680$ |
$96$ |
$3$ |
$0.215604345$ |
$1$ |
|
$10$ |
$256$ |
$0.033633$ |
$8869743/2401$ |
$0.92625$ |
$3.27659$ |
$[1, -1, 1, -65, 162]$ |
\(y^2+xy+y=x^3-x^2-65x+162\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ |
$[(8, 6)]$ |
1575.d2 |
1575d1 |
1575.d |
1575d |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{3} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$1680$ |
$96$ |
$3$ |
$0.431208691$ |
$1$ |
|
$9$ |
$128$ |
$-0.312941$ |
$35937/49$ |
$0.83942$ |
$2.56972$ |
$[1, -1, 1, 10, 12]$ |
\(y^2+xy+y=x^3-x^2+10x+12\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ |
$[(0, 3)]$ |
1575.e1 |
1575j1 |
1575.e |
1575j |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{9} \cdot 5^{9} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$420$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1920$ |
$0.962808$ |
$5177717/189$ |
$0.97949$ |
$4.96284$ |
$[1, -1, 1, -4055, -95178]$ |
\(y^2+xy+y=x^3-x^2-4055x-95178\) |
2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? |
$[ ]$ |
1575.e2 |
1575j2 |
1575.e |
1575j |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{12} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$420$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$1.309381$ |
$300763/35721$ |
$1.11388$ |
$5.29882$ |
$[1, -1, 1, 1570, -342678]$ |
\(y^2+xy+y=x^3-x^2+1570x-342678\) |
2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? |
$[ ]$ |
1575.f1 |
1575e3 |
1575.f |
1575e |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{15} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$630$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$4320$ |
$1.481487$ |
$-250523582464/13671875$ |
$1.02112$ |
$5.78446$ |
$[0, 0, 1, -29550, 2045281]$ |
\(y^2+y=x^3-29550x+2045281\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 42.8.0-3.a.1.2, 45.24.0-9.a.1.1, $\ldots$ |
$[ ]$ |
1575.f2 |
1575e1 |
1575.f |
1575e |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{7} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$630$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$480$ |
$0.382875$ |
$-262144/35$ |
$0.88715$ |
$3.92998$ |
$[0, 0, 1, -300, -2219]$ |
\(y^2+y=x^3-300x-2219\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 42.8.0-3.a.1.1, 45.24.0-9.a.1.2, $\ldots$ |
$[ ]$ |
1575.f3 |
1575e2 |
1575.f |
1575e |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$630$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1440$ |
$0.932181$ |
$71991296/42875$ |
$1.06493$ |
$4.66454$ |
$[0, 0, 1, 1950, 5656]$ |
\(y^2+y=x^3+1950x+5656\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 42.24.0-3.a.1.1, 63.36.0.b.1, 70.2.0.a.1, $\ldots$ |
$[ ]$ |
1575.g1 |
1575a2 |
1575.g |
1575a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{3} \cdot 5^{9} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$1680$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1280$ |
$0.838351$ |
$8869743/2401$ |
$0.92625$ |
$4.58828$ |
$[1, -1, 0, -1617, 18666]$ |
\(y^2+xy=x^3-x^2-1617x+18666\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ |
$[ ]$ |
1575.g2 |
1575a1 |
1575.g |
1575a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{3} \cdot 5^{9} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$1680$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$640$ |
$0.491778$ |
$35937/49$ |
$0.83942$ |
$3.88140$ |
$[1, -1, 0, 258, 1791]$ |
\(y^2+xy=x^3-x^2+258x+1791\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ |
$[ ]$ |
1575.h1 |
1575f3 |
1575.h |
1575f |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{7} \cdot 5^{10} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3072$ |
$1.188063$ |
$157551496201/13125$ |
$0.96087$ |
$5.70922$ |
$[1, -1, 0, -25317, 1556716]$ |
\(y^2+xy=x^3-x^2-25317x+1556716\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.ba.1, 42.6.0.a.1, $\ldots$ |
$[ ]$ |
1575.h2 |
1575f2 |
1575.h |
1575f |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{8} \cdot 5^{8} \cdot 7^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$420$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1536$ |
$0.841490$ |
$47045881/11025$ |
$1.04751$ |
$4.60675$ |
$[1, -1, 0, -1692, 21091]$ |
\(y^2+xy=x^3-x^2-1692x+21091\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.a.1, 28.12.0-2.a.1.2, 60.24.0-20.a.1.2, $\ldots$ |
$[ ]$ |
1575.h3 |
1575f1 |
1575.h |
1575f |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{7} \cdot 5^{7} \cdot 7 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$768$ |
$0.494916$ |
$1771561/105$ |
$0.96659$ |
$4.16132$ |
$[1, -1, 0, -567, -4784]$ |
\(y^2+xy=x^3-x^2-567x-4784\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.ba.1, 56.12.0-4.c.1.3, $\ldots$ |
$[ ]$ |
1575.h4 |
1575f4 |
1575.h |
1575f |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{10} \cdot 5^{7} \cdot 7^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$840$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3072$ |
$1.188063$ |
$590589719/972405$ |
$0.94478$ |
$5.03361$ |
$[1, -1, 0, 3933, 127966]$ |
\(y^2+xy=x^3-x^2+3933x+127966\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 20.12.0.h.1, 56.12.0-4.c.1.3, $\ldots$ |
$[ ]$ |
1575.i1 |
1575h1 |
1575.i |
1575h |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{9} \cdot 5^{3} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$420$ |
$12$ |
$0$ |
$2.513802022$ |
$1$ |
|
$3$ |
$384$ |
$0.158088$ |
$5177717/189$ |
$0.97949$ |
$3.65116$ |
$[1, -1, 0, -162, -729]$ |
\(y^2+xy=x^3-x^2-162x-729\) |
2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? |
$[(30, 129)]$ |
1575.i2 |
1575h2 |
1575.i |
1575h |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{12} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$420$ |
$12$ |
$0$ |
$1.256901011$ |
$1$ |
|
$4$ |
$768$ |
$0.504663$ |
$300763/35721$ |
$1.11388$ |
$3.98713$ |
$[1, -1, 0, 63, -2754]$ |
\(y^2+xy=x^3-x^2+63x-2754\) |
2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? |
$[(18, 54)]$ |
1575.j1 |
1575c2 |
1575.j |
1575c |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( 3^{9} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$1680$ |
$96$ |
$3$ |
$0.860136541$ |
$1$ |
|
$6$ |
$768$ |
$0.582939$ |
$8869743/2401$ |
$0.92625$ |
$4.17196$ |
$[1, -1, 0, -582, -3799]$ |
\(y^2+xy=x^3-x^2-582x-3799\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ |
$[(-16, 43)]$ |
1575.j2 |
1575c1 |
1575.j |
1575c |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{9} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$1680$ |
$96$ |
$3$ |
$1.720273082$ |
$1$ |
|
$3$ |
$384$ |
$0.236365$ |
$35937/49$ |
$0.83942$ |
$3.46508$ |
$[1, -1, 0, 93, -424]$ |
\(y^2+xy=x^3-x^2+93x-424\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ |
$[(8, 24)]$ |
1575.k1 |
1575k2 |
1575.k |
1575k |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{3} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1200$ |
$0.603499$ |
$-2887553024/16807$ |
$0.98803$ |
$4.51149$ |
$[0, 0, 1, -1335, -18869]$ |
\(y^2+y=x^3-1335x-18869\) |
5.12.0.a.1, 15.24.0-5.a.1.1, 70.24.1.d.1, 210.48.1.? |
$[ ]$ |
1575.k2 |
1575k1 |
1575.k |
1575k |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$-0.201220$ |
$4096/7$ |
$0.98030$ |
$2.77196$ |
$[0, 0, 1, 15, 31]$ |
\(y^2+y=x^3+15x+31\) |
5.12.0.a.2, 15.24.0-5.a.2.1, 70.24.1.d.2, 210.48.1.? |
$[ ]$ |