Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 157470b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
157470.z1 | 157470b1 | \([1, 0, 0, -106997980, 425993584400]\) | \(-135472282703069439152665897921/240743885045760000000\) | \(-240743885045760000000\) | \([7]\) | \(21425152\) | \(3.1694\) | \(\Gamma_0(N)\)-optimal |
157470.z2 | 157470b2 | \([1, 0, 0, 716932820, -2529437472640]\) | \(40752954391814893896906735593279/26347975509292698179843819760\) | \(-26347975509292698179843819760\) | \([]\) | \(149976064\) | \(4.1423\) |
Rank
sage: E.rank()
The elliptic curves in class 157470b have rank \(1\).
Complex multiplication
The elliptic curves in class 157470b do not have complex multiplication.Modular form 157470.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.