Show commands for:
SageMath
sage: E = EllipticCurve("x1")
sage: E.isogeny_class()
Elliptic curves in class 15680x
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
15680.k2 | 15680x1 | [0, 1, 0, 159, 895] | [2] | 6144 | \(\Gamma_0(N)\)-optimal |
15680.k1 | 15680x2 | [0, 1, 0, -961, 7839] | [2] | 12288 |
Rank
sage: E.rank()
The elliptic curves in class 15680x have rank \(2\).
Complex multiplication
The elliptic curves in class 15680x do not have complex multiplication.Modular form 15680.2.a.x
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.