Properties

Label 15680p
Number of curves $1$
Conductor $15680$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 15680p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
15680.bg1 15680p1 [0, -1, 0, 159, 4705] [] 7680 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 15680p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 15680p do not have complex multiplication.

Modular form 15680.2.a.p

sage: E.q_eigenform(10)
 
\( q - q^{3} - q^{5} - 2q^{9} + 2q^{11} + 4q^{13} + q^{15} + 6q^{19} + O(q^{20}) \)