Show commands for:
SageMath
sage: E = EllipticCurve("bx1")
sage: E.isogeny_class()
Elliptic curves in class 15680bx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
15680.t2 | 15680bx1 | [0, 1, 0, 1055, -17025] | [] | 16128 | \(\Gamma_0(N)\)-optimal |
15680.t1 | 15680bx2 | [0, 1, 0, -10145, 679615] | [] | 48384 |
Rank
sage: E.rank()
The elliptic curves in class 15680bx have rank \(1\).
Complex multiplication
The elliptic curves in class 15680bx do not have complex multiplication.Modular form 15680.2.a.bx
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.