Properties

Label 15680.n
Number of curves 4
Conductor 15680
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("15680.n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 15680.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
15680.n1 15680s3 [0, 1, 0, -8101, 277899] [2] 17280  
15680.n2 15680s4 [0, 1, 0, -7121, 348655] [2] 34560  
15680.n3 15680s1 [0, 1, 0, -261, -1205] [2] 5760 \(\Gamma_0(N)\)-optimal
15680.n4 15680s2 [0, 1, 0, 719, -7281] [2] 11520  

Rank

sage: E.rank()
 

The elliptic curves in class 15680.n have rank \(0\).

Modular form 15680.2.a.n

sage: E.q_eigenform(10)
 
\( q - 2q^{3} - q^{5} + q^{9} + 2q^{13} + 2q^{15} + 6q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.