Properties

Label 15680.h
Number of curves $2$
Conductor $15680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 15680.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15680.h1 15680bl1 \([0, 0, 0, -412972, 102148144]\) \(-5154200289/20\) \(-30224159866880\) \([]\) \(161280\) \(1.7999\) \(\Gamma_0(N)\)-optimal
15680.h2 15680bl2 \([0, 0, 0, 2879828, -969197264]\) \(1747829720511/1280000000\) \(-1934346231480320000000\) \([]\) \(1128960\) \(2.7728\)  

Rank

sage: E.rank()
 

The elliptic curves in class 15680.h have rank \(0\).

Complex multiplication

The elliptic curves in class 15680.h do not have complex multiplication.

Modular form 15680.2.a.h

sage: E.q_eigenform(10)
 
\(q - 3q^{3} + q^{5} + 6q^{9} + 2q^{11} - 3q^{15} - 4q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.