Properties

Label 15680.a
Number of curves $1$
Conductor $15680$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 15680.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15680.a1 15680cx1 \([0, 0, 0, 6272, 581728]\) \(14155776/84035\) \(-161982606786560\) \([]\) \(92160\) \(1.4085\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 15680.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 15680.a do not have complex multiplication.

Modular form 15680.2.a.a

sage: E.q_eigenform(10)
 
\(q - 3q^{3} - q^{5} + 6q^{9} - 5q^{11} - 3q^{13} + 3q^{15} + q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display