Show commands for:
SageMath
sage: E = EllipticCurve("by1")
sage: E.isogeny_class()
Elliptic curves in class 156090by
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
156090.e2 | 156090by1 | [1, 1, 0, -1240978, 551258932] | [2] | 6451200 | \(\Gamma_0(N)\)-optimal |
156090.e1 | 156090by2 | [1, 1, 0, -20058898, 34570294708] | [2] | 12902400 |
Rank
sage: E.rank()
The elliptic curves in class 156090by have rank \(1\).
Complex multiplication
The elliptic curves in class 156090by do not have complex multiplication.Modular form 156090.2.a.by
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.