Properties

Label 15600bh
Number of curves $2$
Conductor $15600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bh1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 15600bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15600.y2 15600bh1 \([0, -1, 0, 1592, 67312]\) \(6967871/35100\) \(-2246400000000\) \([2]\) \(27648\) \(1.0522\) \(\Gamma_0(N)\)-optimal
15600.y1 15600bh2 \([0, -1, 0, -18408, 867312]\) \(10779215329/1232010\) \(78848640000000\) \([2]\) \(55296\) \(1.3988\)  

Rank

sage: E.rank()
 

The elliptic curves in class 15600bh have rank \(1\).

Complex multiplication

The elliptic curves in class 15600bh do not have complex multiplication.

Modular form 15600.2.a.bh

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2q^{7} + q^{9} - 4q^{11} + q^{13} - 8q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.