Properties

Label 1560.f
Number of curves $4$
Conductor $1560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1560.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1560.f1 1560k4 \([0, -1, 0, -8320, 294892]\) \(31103978031362/195\) \(399360\) \([2]\) \(1536\) \(0.68038\)  
1560.f2 1560k3 \([0, -1, 0, -720, 972]\) \(20183398562/11567205\) \(23689635840\) \([2]\) \(1536\) \(0.68038\)  
1560.f3 1560k2 \([0, -1, 0, -520, 4732]\) \(15214885924/38025\) \(38937600\) \([2, 2]\) \(768\) \(0.33381\)  
1560.f4 1560k1 \([0, -1, 0, -20, 132]\) \(-3631696/24375\) \(-6240000\) \([4]\) \(384\) \(-0.012768\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1560.f have rank \(0\).

Complex multiplication

The elliptic curves in class 1560.f do not have complex multiplication.

Modular form 1560.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 4q^{7} + q^{9} + 4q^{11} + q^{13} - q^{15} + 6q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.