Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 1560.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1560.a1 | 1560i4 | \([0, -1, 0, -7696, 261820]\) | \(49235161015876/137109375\) | \(140400000000\) | \([2]\) | \(1536\) | \(1.0115\) | |
1560.a2 | 1560i3 | \([0, -1, 0, -7176, -230724]\) | \(39914580075556/172718325\) | \(176863564800\) | \([2]\) | \(1536\) | \(1.0115\) | |
1560.a3 | 1560i2 | \([0, -1, 0, -676, 676]\) | \(133649126224/77000625\) | \(19712160000\) | \([2, 2]\) | \(768\) | \(0.66494\) | |
1560.a4 | 1560i1 | \([0, -1, 0, 169, 0]\) | \(33165879296/19278675\) | \(-308458800\) | \([4]\) | \(384\) | \(0.31837\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1560.a have rank \(1\).
Complex multiplication
The elliptic curves in class 1560.a do not have complex multiplication.Modular form 1560.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.