Minimal Weierstrass equation
\(y^2=x^3+x^2-13x-4\)
Mordell-Weil group structure
\(\Z/{6}\Z\)
Torsion generators
\( \left(-1, 3\right) \)
Integral points
\( \left(-4, 0\right) \), \((-1,\pm 3)\), \((5,\pm 9)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 156 \) | = | \(2^{2} \cdot 3 \cdot 13\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(151632 \) | = | \(2^{4} \cdot 3^{6} \cdot 13 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{16384000}{9477} \) | = | \(2^{17} \cdot 3^{-6} \cdot 5^{3} \cdot 13^{-1}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(2.7522991872794050113370038521\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 18 \) = \( 3\cdot( 2 \cdot 3 )\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(6\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 12 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 1.3761495936397025056685019260682219193 \)
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(3\) | \(IV\) | Additive | -1 | 2 | 4 | 0 |
\(3\) | \(6\) | \(I_{6}\) | Split multiplicative | -1 | 1 | 6 | 6 |
\(13\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
\(3\) | B.1.1 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 13 |
---|---|---|---|
Reduction type | add | split | split |
$\lambda$-invariant(s) | - | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class 156.b
consists of 4 curves linked by isogenies of
degrees dividing 6.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \times \Z/6\Z\) | 2.2.13.1-1872.1-h3 |
$4$ | 4.0.7488.1 | \(\Z/12\Z\) | Not in database |
$6$ | 6.0.12338352.2 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
$8$ | 8.4.177935486976.6 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$8$ | 8.0.9475854336.3 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$9$ | 9.3.26228424500928.2 | \(\Z/18\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/6\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/24\Z\) | Not in database |
$18$ | 18.6.255423686981904214279152247590912.1 | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.