Properties

Label 155526bp
Number of curves $1$
Conductor $155526$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bp1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 155526bp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155526.ce1 155526bp1 \([1, 1, 1, 235776876, 935222011989]\) \(83228502970940543/69854999176704\) \(-1216613827234301684822828544\) \([]\) \(100362240\) \(3.8848\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 155526bp1 has rank \(0\).

Complex multiplication

The elliptic curves in class 155526bp do not have complex multiplication.

Modular form 155526.2.a.bp

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 3q^{5} - q^{6} + q^{8} + q^{9} + 3q^{10} - 4q^{11} - q^{12} + 3q^{13} - 3q^{15} + q^{16} - 4q^{17} + q^{18} + O(q^{20})\)  Toggle raw display