Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 0, -29913374, 53882993604]) # or

sage: E = EllipticCurve("155526h2")

gp: E = ellinit([1, 0, 0, -29913374, 53882993604]) \\ or

gp: E = ellinit("155526h2")

magma: E := EllipticCurve([1, 0, 0, -29913374, 53882993604]); // or

magma: E := EllipticCurve("155526h2");

$$y^2 + x y = x^{3} - 29913374 x + 53882993604$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(\frac{41428}{9}, -\frac{3225562}{27}\right)$$ $$\hat{h}(P)$$ ≈ $4.731148916465079$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(4092, -2046\right)$$, $$\left(\frac{8479}{4}, -\frac{8479}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-6212, 3106\right)$$, $$\left(1726, 85132\right)$$, $$\left(1726, -86858\right)$$, $$\left(4092, -2046\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$155526$$ = $$2 \cdot 3 \cdot 7^{2} \cdot 23^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$458699294822796955517184$$ = $$2^{8} \cdot 3^{4} \cdot 7^{10} \cdot 23^{8}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{169967019783457}{26337394944}$$ = $$2^{-8} \cdot 3^{-4} \cdot 7^{-4} \cdot 13^{3} \cdot 23^{-2} \cdot 4261^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$4.73114891647$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.089733808987$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$512$$  = $$2^{3}\cdot2^{2}\cdot2^{2}\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 155526.2.a.cp

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{3} + q^{4} - 2q^{5} + q^{6} + q^{8} + q^{9} - 2q^{10} + 4q^{11} + q^{12} + 2q^{13} - 2q^{15} + q^{16} - 6q^{17} + q^{18} + 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 25952256 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$13.5854084211$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$8$$ $$I_{8}$$ Split multiplicative -1 1 8 8
$$3$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$7$$ $$4$$ $$I_4^{*}$$ Additive -1 2 10 4
$$23$$ $$4$$ $$I_2^{*}$$ Additive -1 2 8 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X98f.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 2 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 155526.cp consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{161})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-7}, \sqrt{-23})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database
$4$ $$\Q(\sqrt{7}, \sqrt{-23})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-7}, \sqrt{23})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{7}, \sqrt{23})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.