Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 155298c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
155298.bb1 | 155298c1 | \([1, 0, 0, -11086251, 14206955697]\) | \(-150687710990775834204537649/1643007120586850304\) | \(-1643007120586850304\) | \([7]\) | \(6914880\) | \(2.6498\) | \(\Gamma_0(N)\)-optimal |
155298.bb2 | 155298c2 | \([1, 0, 0, 79590489, -217549296723]\) | \(55758005550664597131275876111/52714175901876612774649284\) | \(-52714175901876612774649284\) | \([]\) | \(48404160\) | \(3.6227\) |
Rank
sage: E.rank()
The elliptic curves in class 155298c have rank \(0\).
Complex multiplication
The elliptic curves in class 155298c do not have complex multiplication.Modular form 155298.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.