Show commands for:
SageMath
sage: E = EllipticCurve("di1")
sage: E.isogeny_class()
Elliptic curves in class 154800di
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
154800.fy3 | 154800di1 | [0, 0, 0, -246675, -47096750] | [2] | 884736 | \(\Gamma_0(N)\)-optimal |
154800.fy2 | 154800di2 | [0, 0, 0, -318675, -17360750] | [2, 2] | 1769472 | |
154800.fy1 | 154800di3 | [0, 0, 0, -3018675, 2004939250] | [2] | 3538944 | |
154800.fy4 | 154800di4 | [0, 0, 0, 1229325, -136556750] | [2] | 3538944 |
Rank
sage: E.rank()
The elliptic curves in class 154800di have rank \(1\).
Complex multiplication
The elliptic curves in class 154800di do not have complex multiplication.Modular form 154800.2.a.di
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.