Properties

Label 154800bj
Number of curves $2$
Conductor $154800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 154800bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
154800.h2 154800bj1 [0, 0, 0, -36921675, -89544415750] [2] 23224320 \(\Gamma_0(N)\)-optimal
154800.h1 154800bj2 [0, 0, 0, -596793675, -5611561951750] [2] 46448640  

Rank

sage: E.rank()
 

The elliptic curves in class 154800bj have rank \(1\).

Complex multiplication

The elliptic curves in class 154800bj do not have complex multiplication.

Modular form 154800.2.a.bj

sage: E.q_eigenform(10)
 
\( q - 4q^{7} - 4q^{11} - 4q^{13} + 4q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.