Properties

Label 1530.g
Number of curves $2$
Conductor $1530$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1530.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1530.g do not have complex multiplication.

Modular form 1530.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + 2 q^{7} - q^{8} - q^{10} - q^{13} - 2 q^{14} + q^{16} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1530.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1530.g1 1530g2 \([1, -1, 0, -59769, 5820525]\) \(-32391289681150609/1228250000000\) \(-895394250000000\) \([3]\) \(7560\) \(1.6391\)  
1530.g2 1530g1 \([1, -1, 0, 3591, 24813]\) \(7023836099951/4456448000\) \(-3248750592000\) \([]\) \(2520\) \(1.0898\) \(\Gamma_0(N)\)-optimal