Properties

Label 1530.f
Number of curves $4$
Conductor $1530$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1530.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1530.f1 1530e4 \([1, -1, 0, -1674, 26730]\) \(711882749089/1721250\) \(1254791250\) \([2]\) \(1024\) \(0.62468\)  
1530.f2 1530e3 \([1, -1, 0, -1494, -21762]\) \(506071034209/2505630\) \(1826604270\) \([2]\) \(1024\) \(0.62468\)  
1530.f3 1530e2 \([1, -1, 0, -144, 108]\) \(454756609/260100\) \(189612900\) \([2, 2]\) \(512\) \(0.27811\)  
1530.f4 1530e1 \([1, -1, 0, 36, 0]\) \(6967871/4080\) \(-2974320\) \([2]\) \(256\) \(-0.068467\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1530.f have rank \(1\).

Complex multiplication

The elliptic curves in class 1530.f do not have complex multiplication.

Modular form 1530.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} - 4 q^{11} + 2 q^{13} + q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.