Show commands for:
SageMath
sage: E = EllipticCurve("b1")
sage: E.isogeny_class()
Elliptic curves in class 1530.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
1530.b1 | 1530c7 | [1, -1, 0, -1021230, 397475626] | [2] | 16384 | |
1530.b2 | 1530c3 | [1, -1, 0, -195840, -33309104] | [2] | 4096 | |
1530.b3 | 1530c5 | [1, -1, 0, -64980, 5986876] | [2, 2] | 8192 | |
1530.b4 | 1530c4 | [1, -1, 0, -12960, -453200] | [2, 2] | 4096 | |
1530.b5 | 1530c2 | [1, -1, 0, -12240, -518144] | [2, 2] | 2048 | |
1530.b6 | 1530c1 | [1, -1, 0, -720, -8960] | [2] | 1024 | \(\Gamma_0(N)\)-optimal |
1530.b7 | 1530c6 | [1, -1, 0, 27540, -2745500] | [2] | 8192 | |
1530.b8 | 1530c8 | [1, -1, 0, 58950, 26038750] | [2] | 16384 |
Rank
sage: E.rank()
The elliptic curves in class 1530.b have rank \(0\).
Complex multiplication
The elliptic curves in class 1530.b do not have complex multiplication.Modular form 1530.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 16 & 2 & 4 & 8 & 16 & 8 & 4 \\ 16 & 1 & 8 & 4 & 2 & 4 & 8 & 16 \\ 2 & 8 & 1 & 2 & 4 & 8 & 4 & 2 \\ 4 & 4 & 2 & 1 & 2 & 4 & 2 & 4 \\ 8 & 2 & 4 & 2 & 1 & 2 & 4 & 8 \\ 16 & 4 & 8 & 4 & 2 & 1 & 8 & 16 \\ 8 & 8 & 4 & 2 & 4 & 8 & 1 & 8 \\ 4 & 16 & 2 & 4 & 8 & 16 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.