Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 1530.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1530.a1 | 1530a2 | \([1, -1, 0, -37410, -2753884]\) | \(294172502025843/2656250000\) | \(52282968750000\) | \([2]\) | \(7680\) | \(1.4549\) | |
1530.a2 | 1530a1 | \([1, -1, 0, -690, -102700]\) | \(-1847284083/231200000\) | \(-4550709600000\) | \([2]\) | \(3840\) | \(1.1083\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1530.a have rank \(0\).
Complex multiplication
The elliptic curves in class 1530.a do not have complex multiplication.Modular form 1530.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.